Replace the dropper and lid, and mix well by gently inverting several times.

Other samples such as tissue exudate should be treated in the same way as for plasma or serum samples.

Snake venom in an envenomated patient will be neutralised and undetectable after adequate amounts of the anti-venom are given.


Not all snake venoms are reliably detected by the SVDK. The SVDK is designed to detect venom from snakes commonly found in Australia. Identification of the offending snake venom's immunotype using the SVDK aids in the selection of the monovalent antivenom.

The SVDK utilises a rapid, lyophilised, simultaneous sandwich enzyme immunoassay. Seqirus manufactures a pair of the SVDK, one for venom from black snakes and one for venom from tiger snakes. The SVDK is designed to detect black snake (Figs. 1 and 2) and tiger snake (Figs. 3 and 4) venoms in vitro. It is not designed to detect venom from cold-blooded reptiles, fish or other vertebrates, or non-venomous snakes. The SVDK detects venom from snakes that cause envenomation in Australia and Papua New Guinea. The SVDK is not designed to detect venom from snakes that cause envenomation in other locations.

The SVDK has an inbuilt Positive and Negative Control to ensure that each test gives a valid result. For the test to be valid, the Positive Control must change blue and the Negative Control must remain brown. If the Positive Control remains brown, indicating that the test does not work, it is invalid and a fresh kit should be used.

Prepare Test Sample in Yellow Sample Diluent (YSD).

Adding the Chromogen Solution

Wells are washed to remove unbound materials.

Gently agitate the strip holder to mix the Chromogen and Peroxide Solutions.

Run the strip through a gentle stream of water or saline to wash the wells, and in turn bound by the conjugate in the well specific for that venom. This technique is called a sandwich enzyme immunoassay.

The SVDK must be read within 30 minutes of adding the Peroxide Solution.

Positive reactions in Wells 1-5 indicate the presence of venom and define the snake's immunotype and in conjunction with the result of the Control wells, determine whether the sample contains venom from a black snake or a tiger snake.

If Wells 1 to 5 change blue, then the venom is from a tiger snake (Figs. 3 and 4).

If Wells 1 to 5 remain brown, then the venom is from a black snake (Figs. 1 and 2).

A negative reaction in Wells 1 to 5 indicates that the sample does not contain snake venom (No Colour).

The SVDK is designed to detect venom from black snakes and tiger snakes in Australia and Papua New Guinea. The SVDK cannot reliably detect venom from other types of snakes. Therefore, it is important to take the results of the SVDK in conjunction with the results of the clinical examination of the patient and other laboratory tests to determine the presence and type of snake venom.

The SVDK is a quick and easy method to detect the presence of snake venom in a sample. It is designed to detect venom from black snakes and tiger snakes in Australia and Papua New Guinea. The SVDK is not designed to detect venom from other types of snakes or non-venomous snakes. Therefore, it is important to take the results of the SVDK in conjunction with the results of the clinical examination of the patient and other laboratory tests to determine the presence and type of snake venom.

The SVDK is a quick and easy method to detect the presence of snake venom in a sample. It is designed to detect venom from black snakes and tiger snakes in Australia and Papua New Guinea. The SVDK is not designed to detect venom from other types of snakes or non-venomous snakes. Therefore, it is important to take the results of the SVDK in conjunction with the results of the clinical examination of the patient and other laboratory tests to determine the presence and type of snake venom.